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with 

n~ = t i_ l X t I 

and 

n 2 = t i × "ti.~l. 

The method described will work in a mechanical 
manner  without requiring elaborate geometrical con- 
structions. A simple example perhaps will be useful. 

In Fig. 1, the sample is at the origin of Cartesian 
coordinates in which components of vectors are 
expressed by (x,y,z). Suppose that point ms+ ~ is 
variable and is measured experimentally by the 
spherical coordinate system with components [r,~,,r/] 
which is related to the Cartesian coordinate system by 
x = r sin ~, cos r/, y = r sin ~, sin r/, and z = r cos 9,. 

Let the scatterer m s_ 1 be located at (0,-3,0),  and let 
the scatterer, or X-ray source, ms_2, be located at 
(0,-6,3).  

Application of (A 1) gives 

t s = r sin ~, cos r/i + r sin ~ sin r/j + r cos ~,k; 

ts_ 1 = 3j; ts_ 2 = 3j - 3k. 

The terms (i,j,k) are unit vectors in the Cartesian 
coordinate system. 

The term n I is determined by 

i j k = 

nl = ts_2 x ts_ 1 = 0 3 - 3  9i. 

0 3 0 

In the same manner, n 2 is found to be 

n 2 = 3r cos ~,i -- 3r sin 9, cos r/k. 

All of the quantities necessary to solve (A2) and 
(A3) have been determined. Use of (A2) results in the 

two total scattering angles 20s_ 1 = z~/4 and 20 s = 
cos-l(s in ~, sin r/). 

Use of (A3) results in the angle of rotation between 
the scattering planes 

Ys, s-I = Cos-l{( 1 + tan2 If cos 2 /])--1/2}. 

Note added in proof. It is emphasized that inverse 
cosines and square roots result in both a positive and a 
negative solution. The definitions used allow the correct 
signs to be selected, but explicit rules may be helpful. 
The negative solution of (A3) is used if n t × n 2 = Lt  l 
with L positive. The angle ~ is negative if e × p = Ns 0 
with N positive. Also, b must be positive if 20 < 7t/2 
and negative if 20 > zc/2. 
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Abstract 

An extrapolative filtering formalism is used to deter- 
mine a high-resolution positive-definite density 
estimator. In an example, comparison with results from 
Fourier transformation of structure factors shows a 
resolution enhancement facto? of 1.3 for the density 
estimator. The density estimator satisfies a maximum- 

0108-7673/83/050777-07501.50 

entropy criterion and is the direct-space representation 
of a maximum determinant of structure factors as used 
in phase determination. 

1. Introduction 

In a previous paper (Collins, 1978), hereafter referred 
to as paper I, a foundation was laid for extraction of 

© 1983 International Union of Crystallography 
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enhanced-resolution density functions from a given set 
of X-ray diffraction data. As in paper I, the phase 
problem is not at issue in this work and it is assumed 
that available data are in the form of structure factors, 
both magnitudes and phases. It is also assumed, as 
before, that the functions in which resolution is to be 
maximized are density functions which are everywhere 
positive. This assumption has been discussed recently 
by Collins & Mahar (1983). 

Paper I left as open the question of applicability of 
extrapolative filtering in n dimensions. Here we show 
that usable n-dimensional forms can be found and also 
how the corresponding densities relate to determinant 
maximization (Tsoucaris, 1970). The crucial problems 
in developing a three-dimensional filtering formalism 
arise upon going from one to two dimensions. Thus the 
two-dimensional worked problem serves as an il- 
lustration for any number of dimensions beyond one. 
This corresponds to Helson & Lowdenslager's (1958) 
statement that 'analytic function theory divides into 
two distinct disciplines in higher dimensions', where 
reference is made to function theory on the unit circle 
as contrasted with function theory on the unit bicylin- 
der. This state of affairs is obvious in practice as well, 
most notably in the loss of Toeplitz-form matrices 
corresponding to Karle-Hauptman determinants, in 
passing from one dimension to two. Nevertheless, 
Helson & Lowdenslager proved there exists a solution 
to the prediction (extrapolation) problem in several 
variables, and it is their half-lattice construction which 
underlies the present work. 

2. A density estimator 

The following construction and theorem are taken from 
Helson & Lowdenslager (1958) who also provide the 
appropriate proofs and analysis. On a two-dimensional 
primitive net whose points are represented by integral 
coordinates (m,n), S is a half-lattice if 

(a) (0,0) does not exist in S, 
(b) (re,n) exists in S if and only if ( - m , - n )  does not 

exist in S unless m = n = 0, 
(e) (m,n) exists in S and (m',n') exists in S imply 

(m + m', n + n') exists in S. 
The half-lattice so defined is employed in a slightly 

weakened form of Helson and Lowdenslager's theorem 
2: 

Let  p be summable on the bieylinder and given by the 
Fourier series 

P( eix, eiy) = Poo + iV. Pmn exp {-2rci(mx + ny)} (2.1) 
S 

where S is any half-lattice. Then 

f ln l p ldx dy > ln l Poo I. (2.2) 

For present purposes, the important result is that 
I pl > 0 provided it is composed from a half-lattice of 
coefficients and IPool > O. Furthermore, if p is 
summable on the unit bicylinder and Ipl > 0, thenp -1 
is summable and Ip-ll > 0 as well. This allows a formal 
two-dimensional analogy to the one-dimensional den- 
sity estimator given in paper I. The one-dimensional 
estimator is 

cp x = (aZ,/L) C O + C k exp {-2~/kx} , (2.3) 
k = l  

where (az,,/L) is constant for a given order, and the 
coefficients C k correspond to an extrapolation-error 
filter. The two-dimensional formal analog to (2.3) is 

Cpxy= (o~/A)lCoo + ~ ChkeX p {--2m(hx + ky)}1-2 
S 

(2.4) 

in which the coefficients Cnk (yet to be deter~nined) 
must provide a finite nonzero modulus in (2.4). It 
follows from (2.1) and (2.2) that the density estimation 
Cpxy is both positive definite and well behaved if as in 
the one-dimensional case the computation of Chk is 
constrained to give Coo = 1.0. 

In the course of proving another theorem, Helson & 
Lowdenslager (1958) also show that if g (real) is 
positive and summable on the bicylinder then there is a 
unique function H given by the series 

H (x,y) = ~, Cmn exp {-2zci(hx + ky) } (2.5) 
S 

such that 

g = 011 + HI -2, (2.6) 

where 0 is a constant. Of course H is not unique in the 
trivial sense that S may be any half-lattice, but, for 
definite S, it follows that a density estimator of the 
desired form exists and is unique. Evidently the search 
for an estimator of electron density is restricted only by 
the requirement that an estimator be of the form of 
(2.4), Coo = 1.0. Moreover, if in agreement with the 
data such a form is found by any means, it is in fact the 
unique desired result. 

Construction of an electron-density estimator in 
crystallographic application is dependent on the inhe- 
rent positivity of the electron density p. Positivity may 
be imposed by the assumption 

Pxy = Igxy 12 > O. (2.7) 

It is immediately clear that for some positive constant x 
there is c such that 

~:lgxyl-1 = ICxyl (2.8) 

and 
gc = x exp {i~0} (2.9) 

provided only that c has the form of (2.1), Coo = 1.0. 
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The Fourier transform of (2.9) may be represented in 
matrix notation as 

GC = 8; (2.10) 

where Gh, the transform of gx, is a complete set of 
coefficients; Ch, the transform of cx, vanishes off the 
half-lattice S, Coo = 1.0; and Ch may be interpreted as 
the extrapolation error, that is, the failure of the filter C 
to combine elements of G on a shifted half-lattice to 
yield Gh, the element at the shifted origin. Equation 
(2.7) requires that F, the transform of p, be related to G 
and its Hermitian transpose, G*, by 

1 
F = - -  G 'G ,  (2.11) 

A 

where A is the area of a unit cell. Evidently 

1 1 
- -  G* G C  = - -  G* 8 (2 .12)  
A A 

is the same as 

F C = B ,  (2.13) 

in which, according to the analysis of Appendix B in 
paper I, the only nonzero element ~1 is fl0 = o2, the 
variance given by 

1 
- - 8 ' 8 .  (2 .14)  
A 

The computation of Ch follows immediately as the 
solution of 

F~ l°Fl l  Cl = , (2.15) 

L 0 Fn 1 Fnn n 

in which Ch, has been replaced by C i and Flj is in the 
place of Fh,_h; 

It is clear from (2.9) and (2.10) that the auto- 
correlation of e, apart from its value of a 2 at the origin, 
is zero. Its transform then is a2/A, and upon replace- 
ment of c by its Fourier representation, the squared 
modulus of (2.9) becomes 

o~/A 
cp~ = , (2.16) 

1 + s~ Ch exp {--2m'h. x} 

the desired density estimator in which cp has been 
written for Igl e. A value for n is not fixed and it 
corresponds in some sense to the degree of approxi- 
mation. For n = 1, cp = Foo/A everywhere; but for 
point atoms at rest and n somewhere in the 
neighborhood of N, the number of atoms in a unit cell, 
F becomes semidefinite (Goedkoop, 1950) and the 
whole formalism breaks down. 

3. Cons truc t ion  o f  an est imator  

It is not immediately evident how a half-lattice is to 
be selected. If the special quality of a function on a 
half-lattice is termed one-sidedness, then the problem is 
to impose one-sidedness on C with due regard for 
experimental conditions. The problem is clarified by 
consideration of the Hermitian form 

2 C * F C = e n - - Z  C*FiiC j. (3.1) 
l,j 

In addition to the requirement that {ht} describe a 
half-lattice on which C l is to be nonvanishing, the 
experimental bound is that every hi1 = h i - hj be in the 
range 0 _< Ihl _< 2 sin 0max/2 , and consequently that 

-- Fij lie in the range of experimental observation. 
Fh,in _-h, this context it is straightforward to make C 
suitably one-sided. Identify a subset of {h} by s which 
is defined by 0 _< I sl _< sin 0max/2. Suppose that one 
vector s' is larger in magnitude than all others. Now 

h = s -  s' (3 .2)  

describes a lattice portion on which any function is 
one-sided, it includes h = (0,0), and the crucial 
requirement 

0 ~ IhtjI = Is l -  syl ~ 2 sin 0max/2 (3.3) 

is fulfilled. 
At any order n in (2.15), the following construction 

of a density estimator systematically builds the struc- 
ture-factor array of entries for which the maximum of 
I hijI is as small as possible. Suppose the sets {si} and 
{h i } have been ordered by their magnitudes, smallest 
first so that Is01 = Ih01 = 0. For given n construct 
(2.15) with Cs, , i = 0, 1 . . . .  , n. It turns out that (2.15) as 
constructed is satisfactory, but needs rearrangement 
because C is not one-sided. This condition may be 
satisfied by replacing s according to (3.2). The 
structure-factor array is unaffected by this change 
inasmuch as 

htj = s t -- s /=  (si-- s') -- ( s j -  s'), (3.4) 

but the identity of the elements of C is changed with the 
last element becoming Coo. Now (2.15) may be put in 
final form by reordering of C so that new h obtained by 
(3.2) forms a nondecreasing sequence 

Ihil < Ihjl, i < j  (3.5)  

and by subsequent appropriate interchange of rows and 
columns in F. 

For applications, construction of (2.15) is quite 
simple. From the ordered set {s I } select the first n + 1 
elements, find the set {h i } by (3.2), reorder it to satisfy 
(3.5), and make the required entries in F. To solve the 
equations, set 02 = 1.0, compute C, then rescale the 
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2 has its proper value. result so that C O = 1.0 and 0",, 
Density estimation follows immediately by (2.16). 

4. An example 

The two-dimensional centrosymmetric projection of 
hexamethylbenzene reported by Brockway & 
Robertson (1939) was used as the basis for test 
computations illustrating the use of our formalism. For 
hexamethylbenzene the space group is P[  with one half 
the molecule in the asymmetric unit and unit-cell 
constants a = 8.92 (2), b = 8.86 (2), c = 5.30 (1)/k, 
a = 44.45, fl = 116.72, ),= 119.57 °. After least-squares 
adjustment of atomic coordinates for the projection 
and determination of an overall isotropic thermal 
parameter to be B = 3.0 (3).A 2, the resulting calcu- 
lated structure factors were taken as error-free data 
and, except as noted, were used without change in the 
calculations. For this model hydrogen atoms were 
ignored and R = 0.21. 

Procedures necessary to the formation and solution 
of (2.15) and (2.16) were reduced to a computer 
program and density estimates were obtained for most 
values of n in the range 8 < n _< 64. In this case, as in 
any for which structure factors have not been altered to 
correspond to point atoms at rest, n may be much 
greater than N, the number of atoms in a unit cell. The 
smallest value of n for which Cp gives straightforward 
resolution of the (carbon) atoms is 52; n = 54 leads to 
similar but subjectively better results for little additional 
computation. Order 54 corresponds to use of h n = 
(4,3,0) and all other h with smaller magnitude in the 
summation of (2.16); 0"24 ---- 37. The projection density 
obtained by normal Fourier synthesis of the complete 
set of (calculated) two-dimensional data is given in Fig. 
l(a). The density obtained as Cp for order n = 54 is 
given in Fig. 1 (b). For comparison with Fig. l(b), the 
density p given in Fig. 1 (c) was composed by standard 
Fourier synthesis from the 54 unique data of lowest 
resolution. 

It is clear that a coefficient set of given size has 
potentially greater resolving power when used in 
determining Cp in contrast to p. Heuristic inter- 
pretation of the densities and their differences suggests 
that resolution gain in Cp is obtained, at least in part, 
through an imposed peakiness. In a design to force 
greater resolution through increased peakiness, the 
diagonal elements of F in (2.15) were reduced in 
successive iterations by arbitrary fractions of its 
minimum eigenvalue until the ratio of largest to 
smallest eigenvalues was ~100. To be certain the 
results were not misleadingly conditioned by data 
perfection, the experimental data (Brockway & 
Robertson, 1939) with calculated phases were used 
without modification for this test except for sharpening 

through overcorrection for thermal motion; the cor- 
rection factor was exp {B sin 2 8/22 } with B = 6-0,1t 2. 

A series of calculations were carried out for each of 
n = 8, 12, 16, 20, 24. Although Cp displays substantial 
information even for n = 12, adequate qualitative 
representation of the structure as peaks near atomic 
positions does not occur until n -- 20. At n = 20 the 
best representation of several was for F00 reduced from 
90.0 to 69.5 electrons and maximum and minimum 
eigenvalues of F at 180 and 1.37 respectively. Each of 
the six independent atoms was represented by a peak 

(a) 

(b) 

(c) 
Fig. 1. Electron density for the hexamethylbenzene structure 

projected along its c axis computed by (a) standard Fourier 
synthesis of (calculated) structure factors, (b) evaluation of order 
54 Cp, and (c) standard Fourier synthesis of the 54 lowest-order 
unique structure factors. 
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not more than 0.4 A from the correct location, but in 
three cases the peaks were double. The map was 
excessively spiky with a peak maximum of 77 e A -2 in 
a map which averaged to 2 e A-z; the principal peak 
maxima lay in the range 20-77 e A -2 and only 22% of 
the map was above 1 e A-2. For n = 20 the range of 
sin 0/2 represented in F is [0, 0.36 A-q  for which the 
minimum interplanar spacing is 1.37 A. The smallest 
interatomic separation resolved in the projection is a 
foreshortened 1.06 A. This may be compared with the 
failure of a standard Fourier synthesis of perfect data 
to resolve the same interatomic separation with data 
extending to a minimum interplanar spacing of 1.19 A 
as shown in Fig. l(e). 

5. Maxima in entropy and determinants 

Equation (2.9) leads immediately to 

±r f lnlg~12dx=ln x2+ f In dx. (5.1) 
cell cell Cx I 

This corresponds exactly to Shannon's theorem 14 
(Shannon & Weaver, 1949) concerning entropy per 
degree of freedom for ensembles of functions. In (5.1) 
the ensembles are related to the unspecified nature of ~0, 
the phase to be assigned to x, and the similarly 
arbitrary phase of g. For the ensemble of functions G 
related to e by passing the e ensemble through the filter 
C tnv, (5.1) gives the entropy per degree of freedom for 
ensemble F (Shannon & Weaver). Because the second 
moments of the n-dimensional distribution of G are 
fixed at F, the maximization of entropy for the 
ensemble of synthetic processes G is, within a constant 
factor, achieved by formal maximization of the 
left-hand side of (5.1) subject to satisfaction of fixed F. 

The constraint to be imposed is F, the auto- 
correlation of G, defined as 

f Cpx exp {2nih.x} dx = F h, (5.2) 
cell 

where Cp is the density to be determined and h is drawn 
from the set Twhich is of the type {htj} as it appears in 
(2.15). The expression to be maximized is 

f In c& _ ~. 2h [c& exp (2ih. x) - Fhl )dx, (5.3) 
c e l l \  hE T / 

in which Lagrange multipliers have been introduced. 
Maximization with respect to Cp,, results in 

1 
Cp, = . (5.4) 

2h exp {2n'/h. x} 
h@T 

Evidently the entropy maximization requires that 

density be the inverse of a summable positive-definite 
function. This condition is already satisfied by the 
estimator given in (2.16) which consequently is a 
maximum-entropy estimator of electron density. 

The distribution of random variables which yields a 
maximum of entropy given by 

- Y Y p ( x l , . . . , x , )  
--0(3 --00 

x In p(xl , . . .  , xn) dxl . . ,  dx,, (5.5) 

when the second moments are fixed is the Gaussian 
distribution with those moments (Britten & Collins, 
1982; McDonough, 1974; Shannon & Weaver, 1949). 
Evidently Cp corresponds to the Gaussian distribution 
of G which has Fh, h E T, as its second moments. But it 
is also the case that with 

Flj= E{GikG~}, (5.6) 

F a complex expectation, the entropy for the ensemble 
of G realizations is given both by (5.1) and, within a 
constant, by 

ln[ (he) n+ 11FI] (5.7) 

(Britten & Collins, 1982; McDonough, 1974; Shannon 
& Weaver, 1949), F and n as given in (2.15). Thus a 
maximum in the determinant I FI corresponds to a 
maximum-entropy distribution for G as represented by 
Cp. A similar result is given by Narayan & Nityananda 
(1982). 

The maximum-determinant method for phase deter- 
mination (Tsoucaris, 1970) does not use a densely 
sampled space of structure factors. This is in sharp 
contrast with the construction of Cp as given in §3. The 
contrast represents not a difference of principle, but a 
difference in strategy. Whatever the motivation or 
strategy in the construction of a particular determinant 
for maximization and phase determination, the 
reciprocal-lattice vectors identifying the first-column 
entries may be identified as {h~ }. By the following trivial 
rearrangement these may be changed to delimit a 
half-lattice, origin ignored: find h~ of largest magni- 
tude, say h", and calculate h t = h~ - h". After 
relabeling h to form a nondecreasing sequence as given 
by inequality (3.5) then (2.15) can be constructed. The 
elements of F are rearranged but identical and the 
corresponding density estimate follows directly by  
solution of the equation and evaluation of Cp as given 
by (2.16). 

It is clear that in {hi} constructed from {h~} any 
number or pattern of potential members may be 
missing since the original determinant construction 
need not involve one-sidedness. Moreover, it is not 
necessary that even one of {h~} be found in {h i }, except 
possibly for h 0 = h6 = (0,0). Nevertheless, the 
equivalence of entropy expressions (5.1) and (5.7) 
makes it clear that for any determinant maximized in 
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the sense of phase determination (Tsoucaris, 1970), Cp 
is the correct corresponding density. Both the deter- 
minant and the density correspond to maximization of 
entropy for an ensemble of synthetic functions in 
reciprocal space with second moments fixed at F. 

6. Discussion 

We have presented an estimator of electron density at 
enhanced resolution. It was derived using an extra- 
polative filtering formalism but shown to be a 
maximum-entropy estimator as well. Elsewhere (Col- 
fins, 1982) a different estimator of electron density was 
described as computed by iterative entropy maxi- 
mization. This too is a maximum-entropy estimator, 
but in regard to a different objective function, and may 
be identified as MEMp. 

For both density estimators the Shannon (Shannon 
& Weaver, 1949) formulation of entropy has been used 
as given in (5.5). In the case of MEMp the entropy 
actually maximized (Collins, 1982) is a modified form 
of (5.5), which, in any event, is set in three-dimensional 
Cartesian space and uses the probability density for an 
electron at any point, that is, the electron density itself. 
In the case of Cp, the entropy expression is set in an 
n-dimensional space and the probability density is for 
the n random variables G, a synthetic process in 
reciprocal space. 

So long as the information sought in an X-ray 
diffraction experiment is to be found in the electron 
density, a density to be preferred is one which is as 
smooth as possible in agreement with the data. This 
describes the maximum-entropy criterion for entropy 
calculated on the electron distribution itself and MEMp is 
such a function. On the other hand, if a set of structure 
factors is to be studied while conceding a maximum of 
ignorance concerning those not members of the set, the 
corresponding proper density is Cp. 

There are two serious shortcomings in the compu- 
tation of Cp. In contrast to many calculations involving 
structure factors, there is no evident way to introduce 
weights in recognition of prior or experimental uncer- 
tainties. Secondly, the common profusion of dif- 
fraction data cannot be exploited because of the 
limitation on the order of F in (2.15). While the 
inability to include weighting has no discernible related 
advantage, the limitation on the order of F is direztly 
related to one of the distinctive properties of Cp. 

If a set of structure factors completely describes a 
structure in the sense that a density of n distinct 
functions is entirely specified by F of order n 
(Goedkoop, 1950), then a density estimation which 
adequately represents this must be the true density. As 
Goedkoop points out, all I FI of higher order are zero 

and thus they could not be used to generate a new Cp. 
This corresponds to the property of Cp which concedes 
maximum ignorance concerning samples of F unused in 
its computation (Ponsonby, 1973). Of course, there is 
no ignorance to concede after a structure is completely 
specified and Cp therefore should be not subject to 
change by additional samples of F. The advantage to 
this is clearly reflected in the maximum-determinant 
method of phase determination (Tsoucaris, 1970) 
which is based on a (relatively) small subset of 
structure factors. In this method it is desired that a 
phase determination be subject to as little change as 
possible upon consideration of additional structure 
factors not included in F. This is just the specification 
for Cp representing the maximum-entropy distribution 
of a synthetic process G, and Cp is the proper 
maximum-entropy density representation of the maxi- 
mum determinant as it is used in phase determination. 

Resolution enhancement or super-resolution was the 
primary aim of this work and it occurs in Cp. It is not 
clear how super-resolution is to be measured but a 
number corresponding to the effectiveness of structure 
factors for the location of atoms is the ratio (shortest 
interatomic separation resolved in a density): 
(minimum interplanar spacing of the Fourier 
coefficients used in its computation). For the example 
of §4 this ratio is 1.01 for the standard Fourier 
synthesis shown in Fig. 1 (c). For the computation of Cp 
at forced high resolution, n = 20, the ratio is a more 
favorable 0.77. These ratios suggest that in favourable 
cases Cp could afford an enhancement of resolution 
over conventional synthesis of structure factors by a 
factor of 1.3 in linear measure or 2.2 in the cubic 
measure of the effectiveness of a single Fourier 
coefficient. Note that similar super-resolution, although 
subjectively judged, was observed for the reported 
calculation of MEMp for a protein crystal structure 
(Collins, 1982). 

Computation of Cp requires no preliminary represen- 
tations of density. This is in contrast to the iterative 
computation of MEMp (Collins, 1982) which requires 
repeated Fourier syntheses on grids of fineness suitable 
to the resolution sought in the final density function. 
Computation of Cp need involve only one Fourier 
synthesis and at as few or as many points as chosen. 
The corresponding disadvantage is matrix inversion for 
F which can become an unreasonable computation for 
large n or a too small signal/noise ratio. It is never 
certain that any method can rescue an experiment from 
the latter problem. But so long as n is smaller than the 
number of atoms in a unit cell the inversion of F should 
be straightforward, except possibly for the very largest 
crystal structures, and Cp would follow upon routine 
calculations. 

The range of problems for which Cp has practical 
utility will ultimately be determined in experimental 
application. It seems clear in advance, however, that Cp 
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can be useful as a density function primarily for cases 
in which all available (complex) structure factors can 
be incorporated into a well conditioned matrix of the 
type given in (2.15). If there are significantly more 
structure factors available than can be used in one 
matrix, MEMp (Collins, 1982) will give a more authori- 
tative result, but not necessarily at a higher resolution 
than could be realized in Cp. Although the present work 
has not been predicated on any particular modification 
of experimental structure-factor moduli, the normalized 
structure factor corresponding to point atoms at rest is 
most consistent with a goal of resolution maximization. 

Phase determination by the maximum-determinant 
method (Tsoucaris, 1970) leads to a different kind of 
application for Cp. In this case, cp has the role of the 
correct density representation of a maximum determi- 
nant irrespective of the size or completeness of a set of 
structure moduli. Because Cp is the direct-space 
representation of the information carried by the 
corresponding matrix of (phased) structure factors, it is 
the correct initial prior distribution for extending the 
maximum-determinant phases through an entire data 
set by the iterative entropy maximization which results 
in MEMp (Collins, 1982). 

mation physics (Jaynes, 1957) lead to entropy maxi- 
mization on a reciprocal-space process to find cp, the 
density corresponding to a uniquely smooth function F 
(Ponsonby, 1973) constrained by the observed (com- 
plex) structure-factor samples. Although in this case it 
is the smooth function F which is the object to change 
as little as possible upon consideration of additional 
data, its Fourier transform must also be smooth and in 
some sense subject to minimal change. This latter 
smoothness corresponds to the extrapolative filtering 
formalism and enhanced resolution in Cp while the 
smoothness of F corresponds to phase determination 
by the maximum-determinant method (Tsoucaris, 
1970). So long as a determinant order is less than the 
number of atoms in a crystallographic unit cell, cp is 
routinely calculable to obtain an enhanced-resolution 
density function which is the direct-space represen- 
tation of the maximum determinant. 

This work was supported in part by the Robert A. 
Welch Foundation through grant A-742 and by the 
Research Corporation through a Cottrell Research 
Grant. 

7. Conclusion 

Maximum-entropy methodology and an ex- 
trapolative filtering formalism lead to the same density 
estimate with respect to a synthetic reciprocal-space 
process having as samples of its autocorrelation the 
crystallographic structure factors. This density cp may 
be compared with a maximum-entropy electron density 
MEMp (Collins, 1982) for which entropy is iteratively 
maximized on the electron density itself. When electron 
density is itself the desired object of experimental 
determination, the principles of information physics 
(Jaynes, 1957) require the latter use of entropy to 
define an electron density least likely to be changed on 
consideration of data outside the experimental range 
(Benjamin, 1980). 

On the other hand, the same principles of infor- 
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